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Abstract

Analysis of the spatial sub-cellular distribution of proteins is of vital importance to fully under-

stand context specific protein function. Some proteins can be found with a single location

within a cell, but up to half of proteins may reside in multiple locations, can dynamically re-

localise, or reside within an unknown functional compartment. These considerations lead to

uncertainty in associating a protein to a single location. Currently, mass spectrometry (MS)

based spatial proteomics relies on supervised machine learning algorithms to assign pro-

teins to sub-cellular locations based on common gradient profiles. However, such methods

fail to quantify uncertainty associated with sub-cellular class assignment. Here we reformu-

late the framework on which we perform statistical analysis. We propose a Bayesian gener-

ative classifier based on Gaussian mixture models to assign proteins probabilistically to

sub-cellular niches, thus proteins have a probability distribution over sub-cellular locations,

with Bayesian computation performed using the expectation-maximisation (EM) algorithm,

as well as Markov-chain Monte-Carlo (MCMC). Our methodology allows proteome-wide

uncertainty quantification, thus adding a further layer to the analysis of spatial proteomics.

Our framework is flexible, allowing many different systems to be analysed and reveals new

modelling opportunities for spatial proteomics. We find our methods perform competitively

with current state-of-the art machine learning methods, whilst simultaneously providing

more information. We highlight several examples where classification based on the support

vector machine is unable to make any conclusions, while uncertainty quantification using

our approach provides biologically intriguing results. To our knowledge this is the first

Bayesian model of MS-based spatial proteomics data.

Author summary

Sub-cellular localisation of proteins provides insights into sub-cellular biological pro-

cesses. For a protein to carry out its intended function it must be localised to the correct

sub-cellular environment, whether that be organelles, vesicles or any sub-cellular niche.

Correct sub-cellular localisation ensures the biochemical conditions for the protein to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006516 November 27, 2018 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Crook OM, Mulvey CM, Kirk PDW, Lilley

KS, Gatto L (2018) A Bayesian mixture modelling

approach for spatial proteomics. PLoS Comput Biol

14(11): e1006516. https://doi.org/10.1371/journal.

pcbi.1006516

Editor: Christine Vogel, NYU, UNITED STATES

Received: May 23, 2018

Accepted: September 17, 2018

Published: November 27, 2018

Copyright: © 2018 Crook et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are available

in the pRoloc and pRolocdata Bioconductor

packages and manuscript GitHub repository

(https://github.com/lgatto/2018-TAGM-paper).

Funding: LG was supported by the BBSRC

Strategic Longer and Larger grant (Award BB/

L002817/1) and the Wellcome Trust Senior

Investigator Award 110170/Z/15/Z awarded to KSL.

PDWK was supported by the MRC (project

reference MC_UU_00002/10). CMM was

supported by a Wellcome Trust Technology

Development Grant (Grant number 108467/Z/15/

Z). OMC is a Wellcome Trust Mathematical

http://orcid.org/0000-0001-5669-8506
http://orcid.org/0000-0002-2989-2052
http://orcid.org/0000-0002-5931-7489
http://orcid.org/0000-0003-0594-6543
http://orcid.org/0000-0002-1520-2268
https://doi.org/10.1371/journal.pcbi.1006516
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006516&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006516&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006516&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006516&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006516&domain=pdf&date_stamp=2018-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006516&domain=pdf&date_stamp=2018-11-27
https://doi.org/10.1371/journal.pcbi.1006516
https://doi.org/10.1371/journal.pcbi.1006516
http://creativecommons.org/licenses/by/4.0/
https://github.com/lgatto/2018-TAGM-paper


carry out its molecular function are met, as well as being near its intended interaction

partners. Therefore, mis-localisation of proteins alters cell biochemistry and can disrupt,

for example, signalling pathways or inhibit the trafficking of material around the cell. The

sub-cellular distribution of proteins is complicated by proteins that can reside in multiple

micro-environments, or those that move dynamically within the cell. Methods that predict

protein sub-cellular localisation often fail to quantify the uncertainty that arises from the

complex and dynamic nature of the sub-cellular environment. Here we present a Bayesian

methodology to analyse protein sub-cellular localisation. We explicitly model our data

and use Bayesian inference to quantify uncertainty in our predictions. We find our

method is competitive with state-of-the-art machine learning methods and additionally

provides uncertainty quantification. We show that, with this additional information, we

can make deeper insights into the fundamental biochemistry of the cell.

Introduction

Spatial proteomics is an interdisciplinary field studying the localisation of proteins on a large-

scale. Where a protein is localised in a cell is a fundamental question, since a protein must be

localised to its required sub-cellular compartment to interact with its binding partners (for

example, proteins, nucleic acids, metabolic substrates) and carry out its function [1]. Further-

more, mis-localisations of proteins are also critical to our understanding of biology, as aberrant

protein localisation have been implicated in many pathologies [2–6], including cancer [7–10]

and obesity [11].

Sub-cellular localisations of proteins can be studied by high-throughput mass spectrometry

(MS) [12]. MS-based spatial proteomics experiments enable us to confidently determine the

sub-cellular localisation of thousands of proteins within in a cell [13], given the availability of

rigorous data analysis and interpretation [12].

In a typical MS-based spatial proteomics experiment, cells first undergo lysis in a fashion

which maintains the integrity of their organelles. The cell content is then separated using a

variety of methods, such as density separation [13, 14], differential centrifugation [15], free-

flow electrophoresis [16], or affinity purification [17]. In LOPIT [14, 18, 19] and hyperLOPIT

[13, 20], cell lysis is proceeded by separation of the content along a density gradient. Organelles

and macro-molecular complexes are thus characterised by density-specific profiles along the

gradient [21]. Discrete fractions along the continuous density gradient are then collected, and

quantitative protein profiles that match the organelle profiles along the gradient, are measured

using high accuracy mass spectrometry [20].

The data are first visualised using principal component analysis (PCA) and known sub-cel-

lular compartments are annotated [22]. Supervised machine learning algorithms are then typi-

cally employed to create classifiers that associate un-annotated proteins to specific organelles

[23], as well as semi-supervised methods that detect novel sub-cellular clusters using both

labelled and un-labelled features [24]. More recently, a state-of-the-art transfer learning (TL)

algorithm has been shown to improve the quantity and reliability of sub-cellular protein

assignments [25]. Applications of such methods have led to organelle-specific localisation

information of proteins in plants [14], Drosophila [26], chicken [27], human cell lines [24],

mouse pluripotent embryonic stem cells [13] and cancer cell lines [28].

Classification methods which have previously been used include partial least squares dis-

criminate analysis [14], K nearest neighbours [29], random forests [30], naive Bayes [31], neu-

ral networks [32] and the support vector machine amongst others (see [23] for an overview).
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Although these methods have proved successful within the field they have limitations. Typi-

cally, such classifiers output an assignment of proteins to discrete pre-annotated sub-cellular

locations. However, it is important to note that half the proteome cannot be robustly assigned

to a single sub-cellular location, which may be a manifestation of proteins in so far unchara-

terised organelles or proteins that are distributed amongst multiple locations. These factors

lead to uncertainty in the assignment of proteins to sub-cellular localisations, and thus quanti-

fying this uncertainty is of vital importance [33].

To overcome the task of uncertainty quantification, this article presents a probabilistic gen-

erative model for MS-based spatial proteomics data. Our model posits that each annotated

sub-cellular niche can be modelled by a multivariate Gaussian distribution. Thus, the full com-

plement of annotated proteins is captured by a mixture of multivariate Gaussian distributions.

With the prior knowledge that many proteins are not captured by known sub-cellular niches,

we augment our model with an outlier component. Outliers are often dispersed and thus this

additional component is described by a heavy-tailed distribution: the multivariate Student’s t-

distribution, leading us to a T-Augmented Gaussian Mixture model (TAGM).

Given our model and proteins with known location, we can probabilistically infer the

sub-cellular localisation of thousands of proteins. We can perform inference in our model by

findingmaximum a posteriori (MAP) estimates of the parameters. This approach returns the

probability of each protein belonging to each annotated sub-cellular niche. These posterior

localisation probabilities can then be the basis for classification. In a more sophisticated, fully

Bayesian approach to uncertainty quantification, we can additionally infer the entire posterior

distribution of localisation probabilities. This allows the uncertainty in the parameters in our

model to be reflected in the posterior localisation probabilities. We perform this inference

using Markov-chain Monte-Carlo methods; in particular, we provide an efficient collapsed

Gibbs sampler to perform inference.

We perform a comprehensive comparison to state-of-the-art classifiers to demonstrate that

our method is reliable across 19 different spatial proteomics datasets and find that all classifiers

we considered perform competitively. To demonstrate the additional biological advantages

our method can provide, we apply our method to a hyperLOPIT dataset on mouse pluripotent

embryonic stem cells [13]. We consider several examples of proteins that were unable to be

assigned using traditional machine-learning classifiers and show that, by considering the full

posterior distribution of localisation probabilities, we can draw meaningful biological results

and make powerful conclusions. We then turn our hand to a more global perspective, visualis-

ing uncertainty quantification for over 5,000 proteins, simultaneously. This approach reveals

global patterns of protein organisation and their distribution across sub-cellular

compartments.

We make extensive use of the R programming language [34] and existing MS and proteo-

mics packages [35, 36]. We are highly committed to creating open software tools for high qual-

ity processing, visualisation, and analysis of spatial proteomics data. We build upon an already

extensive set of open software tools [36] as part of the Bioconductor project [37, 38] and our

methods are made available as part of this project.

Results

Application to mouse pluripotent embryonic stem cell data

We model mouse pluripotent embryonic stem cell (E14TG2a) data [13], which contains quan-

titation data for 5032 proteins. This high-resolution map was produced using the hyperLOPIT

workflow [20], which uses a sophisticated sub-cellular fractionation scheme. This fractionation

scheme is made possible by the use of Tandem Mass Tag (TMT) 10-plex and high accuracy

A Bayesian mixture modelling approach for spatial proteomics
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TMT quantification was facilitated by using synchronous precursor selection MS3 (SPS-MS3)

[39], which reduces well documented issues with ratio distortion in isobaric multiplexed quan-

titative proteomics [40]. The data resolves 14 sub-cellular niches with an additional chromatin

preparation resolving the nuclear chromatin and non-chromatin components. Two biological

replicates of the data are concatenated, each with 10 fractions along the density gradient. We

defined gold standard organelle markers as those with unambiguous single annotation [23]. A

protein marker list for the mouse pluripotent embryonic stem cells was manually curated

using information from the UniProt database, the Gene Ontology and the literature, as was

performed in [13]. The following section applies our statistical methodology to these data and

we explore the results.

Maximum a posteriori prediction of protein localisation. This section applies the

TAGM model to the mouse pluripotent embryonic stem cell data, by deriving MAP estimates

for the model parameters and using these for prediction. Visualisation is important for data

analysis and exploration. A simple way to visualise our model is to project probability ellipses

onto a PCA plot. Each ellipse contains a proportion of total probability of a particular multi-

variate Gaussian density. The outer ellipse contains 99% of the total probability whilst the mid-

dle and inner ellipses contain 95% and 90% of the probability respectively. Visualising only the

first two principal components can be misleading, since proteins can be more (or less) sepa-

rated in subsequent principal components. We visualise the first two principal components

along with the first and fourth principal components as a representative example. For the

TAGM model, we derive probability ellipses from the MAP estimates of the parameters

(Fig 1).

We now apply the statistical methodology described in section Model, to predict the locali-

sation of proteins to organelles and sub-cellular components. In brief, we produce MAP esti-

mates of the parameters by using the expectation-maximisation algorithm, to form the basis of

a Bayesian analysis (TAGM-MAP). We run the algorithm for 200 iterations and inspect a plot

Fig 1. (a) PCA plot of the 1st and 2nd principal components for the curated marker proteins of the mouse stem cell data. The

organelles are, in general, well separated. Though some organelles overlap, they are separated along different principal components.

The densities used to produce the ellipses are derived from the MAP estimates. (b) Marker resolution along the 1st and 4th principal

components show that the mitochondrion and peroxisome markers are well resolved, despite overlapping in the 1st and 2nd

component. We also see that the ER/Golgi apparatus markers are better separated from the extracellular matrix markers.

https://doi.org/10.1371/journal.pcbi.1006516.g001
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of the log-posterior to assess convergence of the algorithm (see supporting information, sec-

tion S3). We confirm that the difference of the log posterior between the final two iterations is

less than 10−6 and we conclude that our algorithm has converged. The results can be seen in

Fig 2 (left), where the posterior localisation probability is visualised by scaling the pointer for

each protein.

Fig 2 (right) demonstrates a range of probabilistic assignments of proteins to organelles and

sub-cellular niches. We additionally consider a full, sampling-based Bayesian analysis using

Markov-chain Monte Carlo (MCMC) to characterise the uncertainty in the localisation proba-

bilities. In our case a collapsed Gibbs sampler is used to sample from the posterior of localisa-

tion probabilities. The remainder of this article focus on analysis of spatial proteomics in this

fully Bayesian framework.

Uncertainty in the posterior localisation probabilities. This section applies the TAGM

model to the mouse pluripotent embryonic stem cell data, by considering the uncertainty in

the parameters and exploring how this uncertainty propagates to the uncertainty in protein

localisation prediction. In Fig 3 we visualise the model as before using the first two principal

components along with the first and fourth principal component as a representive example.

For the TAGM model, we derive probability ellipses from the expected value of the posterior

normal-inverse-Wishart (NIW) distribution.

We apply the statistical methodology detailed in section Model. We perform posterior com-

putation in the Bayesian setting using standard MCMC methods (TAGM-MCMC). We run 6

chains of our Gibbs sampler in parallel for 15, 000 iterations, throwing away the first 4, 000

iterations for burn-in and retain every 10th sample for thinning. Thus 1,100 sample are

retained from each chain. We then visualise the trace plots of our chains; in particular, we

monitor the number of proteins allocated to the known components (see supporting informa-

tion, section S4). We discard 1 chain because we do not consider it to have converged. For the

remaining 5 chains we further discard the first 500 samples by visual inspection. We then have

600 retained samples from 5 separate chains. For further analysis, we compute the Gelman-

Rubin convergence diagnostic [41, 42], which is computed as R̂ � 1:05. Values of R̂ far from 1

Fig 2. PCA plot of the protein quantitation data with colours representing the predicted class (5032 proteins) illustrating

protein localisation preductions using TAGM-MAP (left) and TAGM-MCMC (right) respectively. The pointer size of a protein

is scaled to the probability that particular protein was assigned to that organelle. Markers, proteins whose localisations are already

known, are automatically assigned a probability of 1 and the size of the pointer reflects this.

https://doi.org/10.1371/journal.pcbi.1006516.g002
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indicate non-convergence and since our statistic is less than 1.1, we conclude our chains have

converged. The remaining samples are then pooled to produce a single chain containing 3000

samples.

We produce point estimates of the posterior localisation probabilities by summarising sam-

ples by their Monte-Carlo average. These summmaries are then visualised in Fig 2 (right

panel), where the pointer is scaled according to the localisation probabilities of the sub-cellular

niche with the largest posterior probability. Monte-Carlo based inference also provides us with

additional information; in particular, we can interrogate individual proteins and their poste-

rior probability distribution over sub-cellular locations.

Fig 4 illustrates one example of the importance of capturing uncertainty. The E3 ubiquitin-

protein ligase TRIP12 (G5E870) is an integral part of ubiquitin fusion degradation pathway

and is a protein of great interest in cancer because it regulates DNA repair pathways. The SVM

failed to assign this protein to any location, with assigment to the 60S Ribosome falling below a

5% FDR and the MAP estimate assigned the protein to the nucleus non-chromatin with poste-

rior probability < 0.95. The posterior distribution of localisation probabilities inferred from

the TAGM-MCMC model, shown in Fig 4, demonstrates that this protein is most probably

localised to the nucleus non-chromatin. However, there is some uncertainty about whether it

localises to the 40S ribosome. This could suggest a dynamic role for this protein, which could

be further explored with a more targeted experiment.

Enrichment analysis of outlier proteins. In previous sections, we demonstrated that we

can assign proteins probabilitically to sub-cellular compartment and quantify the uncertainty

in these assignments. Some proteins cannot be well described as belonging to any known com-

ponent and we model this using an additional T-distribution outlier component (see Section

Model).

It is biologically interesting to decipher what functional role proteins that are far away from

known components play. We perform an over-representation analysis of gene ontology (GO)

terms to assess the biological relevance of the outlier component [43, 44]. We take 1111 pro-

teins that were allocated to known components with probability less than 0.95. Note that these

1111 proteins exclude proteins that are likely to belong to a known location, but we are

Fig 3. (a) Probability ellipses produced from using the MCMC method. The density is the expected value from the NIW

distribution. (b) Probability ellipses visualised along the 1st and 4th principal component also from the MCMC method.

https://doi.org/10.1371/journal.pcbi.1006516.g003
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uncertain about which localisation. We then perform enrichment analysis against the set of all

proteins quantified in the hyperLOPIT experiment. We search against the cellular compart-

ment, biological process and molecular function ontologies.

Supplementary figure C shows this outlier component is enriched for cytoskeletal part

(p< 10−7) and microtuble cytoskeleton (p< 10−7). Cytoskeleton proteins are found through-

out the cell and therefore we would expect them to be found in every fraction along the density

gradient. We also observe enrichment for highly dynamic sub-cellular processes such as cell

division (p< 10−6) and cell cycle processes (p< 10−6), again these proteins are unlikely to

have steady-state locations within a single component. We also see enrichment for molecular

functions such as tranferase activity (p< 0.005), another highly dynamic process. These obser-

vations justify including an additional outlier component in our mixture model.

Fig 4. Violin plot revealing the posterior distribution of localisation probabilities of protein E3 ubiquitin-protein ligase

(G5E870) to organelles and sub-cellular niches. The most probable localisation is nucleus non-chromatin, however there is

uncertainty associated with this assignment.

https://doi.org/10.1371/journal.pcbi.1006516.g004
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Comparison with other classifiers

In this section, we assess the generalisation performance of our methods on several datasets,

by computing performance metrics associated with each classifier as detailed in section Classi-

fier assessment. We compare the SVM and KNN classifiers alongside the MAP and MCMC

approaches detailed in the methods section. We compute the F1 score and quadratic loss over

100 rounds of stratified 5-fold cross-validation. The hyperparameter for the KNN algorithm,

the number of nearest neighbours, is optimised via an additional internal 5-fold cross-valida-

tion and the hyperparameters for the SVM, sigma and cost, are also optimised via internal

5-fold cross validation [45].

We test our methods on the following datasets Drosophila [26], chicken [27], mouse plurip-

otent embryonic stem cells from [13] and [25], the human bone osteosarcoma epithelial

(U2-OS) cell line [28], the HeLa cell line of [15], the 3 HeLa cell lines from [46] and 10 primary

fibroblast datasets from [47]. These datasets represent a great variety of spatial proteomics

experiments across many different workflows.

The two hyperLOPIT datasets on mouse pluripotent embryonic stem cells and the U2-OS

cell line use TMT 10-plex labelling and contain the greatest number of proteins. Earlier LOPIT

experiments on the Drosophila and chicken use iTRAQ 4-plex labelling, whilst another LOPIT

mouse pluripotent embryonic stem cell dataset uses iTRAQ 8-plex. The datasets of [15] and

[46] employ a different methodology completely—separating cellular content using differential

centrifugation (as opposed to along a density-gradient). Furthermore, the methods use SILAC

rather than iTRAQ or TMT for labelling. The experiments of [46] were designed to explore

the functional role of AP-5 by coupling CRISPR-CAS9 knockouts with spatial proteomics

methods. We analysed all three datasets from [46], which includes a wild type HeLa cell line as

a control, as well as two CRISPR-CAS9 knockouts: AP5Z1-KO1 and AP5Z1-KO2 respectively.

In addition, we analyse the spatio-temporal proteomics experiments of [47], which uses

TMT-based MS quantification. This experiment explored infecting primary fibroblasts with

Human cytomegalovirus (HMCV) and the goal of these experiments was to explore the

dynamic perturbation of host proteins during infection, as well as the sub-cellular localisation

of viral proteins throught the HCMV life-cycle. They produced spatial maps at different time

points: 24, 48, 72, 96, 120 hours post infection (hpi), as well as mock maps at these same time

points to serve as a control—this results in 10 different spatial proteomics maps.

In each case, a dataset specific marker list was used, which is curated specifically for the

each cell line. We removed “high-curvature ER” annotations from the HeLa dataset [15], as

well as the “ER Tubular”, “Nuclear pore complex” and “Peroxisome” annotations from the

HeLa CRISPR-CAS9 knockout experiments [46] as there are too few proteins to correctly per-

form cross-validation. Table 1 summarises these datasets, including information about num-

ber of quantified proteins, the workflow used and the number of fractions.

Fig 5 compares the Macro-F1 scores across the datasets for all classifiers and demonstrates

that no single classifier consistently outperforms any other across all datasets, with results

being highly consistent across all methods, as well as across datasets. We perform a pairwise

unpaired t-test with multiple testing correction applied using the Benjamini-Höchberg proce-

dure [48] to detect differences between classifier performance.

In the Drosophila dataset only the KNN algorithm outpeforms the SVM at significance

level of 0.01, whilst no other significant differences exist between the classifiers. In the

chicken DT40 dataset only the MCMC method outperforms the KNN classifier at signifi-

cance level of 0.01, no other significant conclusion can be drawn. In the mouse dataset the

MAP based method outperforms the MCMC method at significance level of 0.01, no other

significant conclusions can be drawn. In the HeLa dataset all classifiers are significantly

A Bayesian mixture modelling approach for spatial proteomics
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Fig 5. Boxplots of the distributions of Macro F1 scores for all spatial proteomics datasets.

https://doi.org/10.1371/journal.pcbi.1006516.g005

Table 1. Summary of spatial proteomics datasets used for comparisons.

MS-based Spatial Proteomics datasets

Cell line or organism Workflow Labelling Fractions (including combined replicates) Proteins

Drosophila LOPIT iTRAQ 4 888

Chicken DT40 LOPIT iTRAQ 16 1090

Mouse pluripotent E14TG2a stem cell HyperLOPIT TMT 20 5032

HeLa (Itzhak et al.) Organeller Maps SILAC 30 3766

HeLa (Hirst et al.) Organeller Maps SILAC 15 2046

U2-OS cell line HyperLOPIT TMT 37 5020

Primary Fibroblast Spatio-Temporal Methods TMT 6 2196

E14TG2a (Breckels et al.) LOPIT iTRAQ 8 2031

https://doi.org/10.1371/journal.pcbi.1006516.t001
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different at a 0.01 level. These differences may exist because the dataset does not fit well with

our modelling assumptions; in particular, this dataset set has been curated to have a class

called “Large Protein Complex”, which likely describes several sub-cellular structures. These

might include nuclear compartments and ribosomes, as well as any cytosolic complex and

large protein complex which pellets during the centrifugation conditions used to capture this

mixed sub-cellular fraction. Moreover, the cytosolic and nuclear fraction were processed sep-

arately leading to possible imbalance with comparisions with other datasets. Thus, the large

protein complex component might be better described as itself a mixture model or more

detailed curation of these data may be required. We do not consider further modelling of this

dataset in this manuscript. For the U2-OS all classifiers are significantly different at a signifi-

cance level of 0.01 except for the SVM classifier and the MCMC method, with the MAP

method performing the best. Fig 5 shows that for this dataset all classifiers are performing

extremely well. In the three Hirst datasets the MAP method significantly outperforms all

other methods (p< 0.01), whilst in the wild type HeLa and in the CRISPR-CAS9 KO1 there

is no significant difference between the KNN and MCMC method. In the CRISPR-CAS9

KO2 the MCMC method outperforms the SVM and KNN methods (p< 0.01). In the interest

of brevity, the remaining results for the t-tests can be found in tables in supporting informa-

tion, section S5.

The Macro-F1 scores do not take into account that whilst the TAGM model may misclas-

sify, it may do so with low confidence. We therefore additionally compute the quadratic loss,

which allows us to make use of the probabilitic information provided by the classifiers. The

lower the quadratic loss the closer the probabilitic predicition is to the true value. We plot the

distributions of quadratic losses for each classifier in Fig 6. We observe highly consistent per-

formance across all classifiers across all datasets. Again, we perform a pairwise unpaired t-test

with multiple testing correction.

We find that in 16 out of 19 datasets (all of those except HeLa Wild type, HeLa KO1 and

HeLa KO2) the MCMC method achieves the lowest quadratic loss at a signifiance level

< 0.0001 over the SVM and KNN classifiers. In 6 out of these 16 datasets there is no significant

difference between the MCMC and the MAP methods. In the three Hirst datasets in which the

MCMC did not acheive the lowest quadratic loss, the SVM outperformed. However, in two of

these datasets (HeLa Wild type and KO1) the MAP method and SVM classifier were not signif-

icantly different. In the Hirst KO2 dataset there were no signicant differences between the

MAP and MCMC methods.

In the vast majority of cases, we observe that if the TAGM model, using the MCMC meth-

odology, makes an incorrect classification it does so with lower confidence than the SVM clas-

sifier, the KNN classifier and the MAP based classifier, whilst if it is correct in its assertion it

does so with greater confidence. Additionally, a fully Bayesian methodology provides us with

not only point estimates of classification probabilities but uncertainty quantification in these

allocations, and we show in the following section that this provides deeper insights into protein

localisation.

Computing distributions of F1 scores and quadratic losses, which can only be done on the

marker proteins, can help us understand whether a classifier might have greater generalised

performance accuracy. However, we are interested in whether there is a large disagreement

between classifiers when prediction is performed on proteins for which we have no withheld

localisation information. This informs us about a systematic bias for a particular classifier or

whether a classifier ensemble could increase performance. To maintain a common set of pro-

teins we set thresholds for each classifier in turn and compare to the other classifier without

thresholding. Firstly, we set a global threshold of 0.95 for the TAGM-MCMC and then for

these proteins plot a contingency table against the classification results from the SVM.
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Secondly, we set a 5% FDR for the SVM and then for these proteins plot a contingency table

against the classification results from the TAGM-MCMC. We visualise the contingency tables

as heat plots in Fig 7.

In general, we see an extremely high level of coherence between the TAGM and the SVM,

with almost all proteins predicted to concordant sub-cellular compartments. Fig 7 shows there

is some disagreement between assigning proteins to the lysosome and plasma membrane, to

the cytosol and proteasome, and between the large and small ribosomal subunits. However, we

have not used the uncertainty in the probabilitic assignments to produce the contingency

tables above. In the next sections, we explore examples of proteins with uncertainty in their

posterior localisation probabilities. Selecting biologically relevant thresholds is important for

any classifier and exploring uncertainty is of vital importance when drawing biological

conclusions.

Fig 6. Boxplots of the distributions of quadratic losses for all spatial proteomics datasets.

https://doi.org/10.1371/journal.pcbi.1006516.g006
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Interpreting and exploring uncertainty

Protein sub-cellular localisation can be uncertain for a number of reasons. Technical variations

and unknown biological novelty, such as yet uncharacterised functional compartments, can be

some of the reasons why a protein might have an unknown or uncertain localisation. Further-

more many proteins are known to reside in multiple locations with possibly different func-

tional duties in each location [49]. With these considerations in mind, it is pertinent to

quantify the uncertainty in our allocation of proteins to organelles. This section explores sev-

eral situations where proteins display uncertain localisation and considers the biological fac-

tors that influence uncertainty. We later explore and visualise whole proteome uncertainty

quantification.

Exportin 5 (Q924C1) forms part of the micro-RNA export machinery of the nucleus, trans-

porting miRNA from the nucleus to the cytoplasm for further processing. It then translocates

back through the nuclear pore complex to return to the nucleus. Exportin 5 can then continue

to mediate further transport between nucleus and cytoplasm. The SVM was unable to assign a

localisation of Exportin 5, with its assignment falling below a 5% FDR to wrongly assign this

protein to the proteasome. This incorrect assertion by the SVM was confounded by the simi-

larity between the cytosol and proteasome profiles. Fig 8 demonstrates, according to the

TAGM-MCMC model, that Exportin 5 most likely localises to the cytosol but there is some

uncertainty with this assignment. This uncertainty is reflected in possible assignment of

Exportin 5 to the nucleus non-chromatin and this uncertainty is a manifestation of the the fact

that the function of this protein is to shuttle between the cytosol and nucleus.

The Phenylalanine–tRNA ligase beta subunit protein (Q9WUA2) has an uncertain localisa-

tion between the 40S ribosome and the nucleus non-chromatin demonstrated in Fig 9. This

protein was left unclassified by the SVM because its score fell below a 5% FDR threshold to

Fig 7. A heatmap representation of a contingency table, where we compare assignment results for proteins with unknown

protein localisation using the TAGM-MCMC and SVM. The scale ranges from 0 to 1 with values indicating the proportion of

assigned proteins to that sub-cellular location. Values along the diagonal represent agreement between classifiers whilst other values

represent disagreement. The coherence between the classifers is very high. (a) In this case we set a probability threshold of 0.95 for

the TAGM assignments with no threshold for the SVM. (b) In this case we set a 5% FDR threshold for the SVM and no threshold for

the TAGM-MCMC.

https://doi.org/10.1371/journal.pcbi.1006516.g007
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assign it to the 40S ribosome. Considering that this protein is involved in the acylation of

transfer RNA (tRNA) with the amino acid phenylalanine to form tRNA–Phe to be used in

translation of proteins, it is therefore unsurprising that this protein’s steady state location is

ribosomal. Whilst the SVM is unable to make an assignment, TAGM-MCMC is able to suggest

an assignment and quantify our uncertainty.

Relatively little is known about the Dedicator of cytokinesis (DOCK) protein 6 (Q8VDR9),

a guanine nucleotide exchange factor for CDC42 and RAC1 small GTPases. The SVM could

not assign localisation to the ER/Golgi, since its score fell below a 5% FDR. Furthermore,

the TAGM-MCMC model assigned this DOCK 6 to the outlier component with posterior

Fig 8. Exportin 5 (Q924C1) showing localisation to the cytosol with some uncertainty about association to the nucleus non-

chromatin. (a) The violin plot shows uncertain localisation between these two sub-cellular localisations. (b) The quantitative profile

of this protein shows mixed profile between the profiles of the organelle markers. (c) The density plot shows a complex distribution

over localisations for this protein. (d) The protein Q924C1 has steady state distribution between the cytosol and nucleus non-

chromatin.

https://doi.org/10.1371/journal.pcbi.1006516.g008

A Bayesian mixture modelling approach for spatial proteomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006516 November 27, 2018 13 / 29

https://doi.org/10.1371/journal.pcbi.1006516.g008
https://doi.org/10.1371/journal.pcbi.1006516


probability > 0.95. Fig 10 shows possible localisation to several components along the secre-

tory pathway. As an activator for CDC42 and RAC1 we may expect to see them with similar

localisation. CDC42, a plasma membrane associated protein, regulates cell cycle and division

and is found with many localisations. Furthermore RAC1, a small GTPase, also regulates

many cellular processes and is found in many locations. Thus the steady-state distribution of

DOCK6 is unlikely to be in a single location, since its interaction partners are found in many

locations. This justifies including an outlier component in our model, else we may erroneously

assign such proteins to a single location.

Fig 9. Phenylalanine-tRNA ligase beta subunit protein TRIP12 (Q9WUA2) showing localisation to the 40S ribosome with some

uncertainty about association to the nucleus non-chromatin. (a) The violin plot shows uncertain localisation between these two

sub-cellular localisations. (b) The quantitative profile of this protein shows mixed profile between the profiles of the organelle

markers. (c) The density plot shows a complex distribution over localisations for this protein. (d) The protein Q9WUA2 has steady

state distribution skewed towards the 40S Ribosome and close to the nucleus non-chromatin.

https://doi.org/10.1371/journal.pcbi.1006516.g009
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Visualising whole sub-cellular proteome uncertainty

The advantage of the TAGM-MCMC model is its ability to provide proteome wide uncertainy

quantification. Regions where organelle assignments overlap are areas were uncertainty is

expected to be the greatest, as well as areas with no dominant component. We take an informa-

tion theoretic approach to summarising uncertainty in protein localisation by computing the

Shannon entropy [50] for each Monte-Carlo sample t = 1, . . ., T of the posterior localisation

Fig 10. Q8VDR9 showing localisation to the outlier component. (a) The violin plot shows uncertain localisation between several

sub-cellular niches. (b) The quantitative profile of this protein shows mixed profile between the profiles of the organelle markers. (c)

The density plot shows a similar localisation probabilities for both the ER/Golgi and Extracellular matrix. (d) The protein Q8VDR9

has steady state distribution in the centre of the plot skewed toward the secretory pathway; in particular, the ER/Golgi and

Extracellular matrix components.

https://doi.org/10.1371/journal.pcbi.1006516.g010
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probabilities of each protein

HðtÞ ¼ �
XK

k¼1

pðtÞik log pðtÞik
� �

( )T

t¼1

; ð1Þ

where pðtÞik denotes the posterior localisation probabilty of protein i to component k at iteration

t. We then summarise this as a Monte-Carlo averaged Shannon entropy. The greater the Shan-

non entropy the more uncertainty associated with the assignment of this protein. The lower

the Shannon entropy the lower the uncertainty associated with the assignment of this protein.

In Fig 11 panel (a), we visualise the Shannon entropy of each protein in a PCA plot, by scaling

the pointers in accordance to this metric. We also note that while localisation probability (of a

Fig 11. PCA plots of the mouse pluripotent embryonic stem cell data, where each point represents a protein and is coloured to

its (probabilistically-)assigned organelle. (a) In this plot, the pointer is scaled to the Shannon entropy of this protein, with larger

pointers indicating greater uncertainty. (b) In this plot, the pointer is scaled to the probability of that protein belonging to its

assigned organelle. (c) We plot the localisation probabilities against the Shannon entropy with each protein.

https://doi.org/10.1371/journal.pcbi.1006516.g011
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protein to its most probable location) and the Shannon entropy are correlated, Fig 11 panel

(c), it is not perfect. Thus it is important to use both the localisation probabilities and the

uncertainty in these assignments to make conclusions.

Fig 11 demonstrates that the regions of highest uncertainty are those in regions where

organelles assignments overlap. The conclusions from this plot are manifold. Firstly, many

proteins are assigned unambiguously to sub-cellular localisations; that is, not only are some

proteins assigned to organelles with high probability but also with low uncertainty. Secondly,

there are well defined regions with high uncertainty, for example proteins in the secretory

pathway or proteins on the boundary between cytosol and proteasome. Finally, some organ-

elles, such as the mitochondria, are extremely well resolved. This observed uncertainty in the

secretory pathway and cytosol could be attributed to the dynamic nature of these parts of the

cell with numerous examples of proteins that traffic in and out of these sub-cellular compart-

ments as part of their biological role. Moreover, the organelles of the secretory pathway share

similar and overlapping physical properties making their separation from one another using

biochemical fractionation more challenging. Furthermore, there is a region located in the cen-

tre of the plot where proteins simultaneously have low probability of belonging to any organ-

elle and high uncertainty in their localisation probability. This suggests that these proteins are

poorly described by any single location. These proteins could belong to multiple locations or

belong to undescribed sub-cellular compartments. The information displayed in these plots

and the conclusion therein would be extremely challenging to obtain without the use of Bayes-

ian methodology.

Discussion

We have demonstrated that a Bayesian framework, based on Gaussian mixture models, for

spatial proteomics can provide whole sub-cellular proteome uncertainty quantification on the

assignment of proteins to organelles and such information is invaluable. Performing MAP

inference using our generative model provides fast and straightforward approach, which is

vital for quality control and early data exploration. Full posterior inference using MCMC pro-

vides not only point estimates of the posterior probability that a protein belongs to a particular

sub-cellular niche, but uncertainty in this assignment. Then, this uncertainty can be summa-

rised in several ways, including, but not limited to, equi-tailed credible intervals of the Monte-

Carlo samples of posterior localisation probabilities. Posterior distributions for indivdual pro-

teins can then be rigorously interrogated to shed light on their biological mechanisms; such as,

transport, signalling and interactions.

As well as the local uncertainty seen by exploring individual proteins, we further explored

using a Monte-Carlo averaged Shannon entropy to visualise global uncertainty. Regions of

high uncertainty, as measured using this Shannon entropy, reflect highly dynamics regions of

the sub-cellular environment. Hence, biologists can now explore uncertainty at different levels

and then are able to make quantifiable conclusions and insights about their data. Furthermore,

our Bayesian model is interpretable and our inferences are fully conditional on our data, allow-

ing them to be easily modified with changing experimental design.

In addition, we produced competitive classifier performance to the state-of-the-art classifi-

ers. We considered two traditional machine-learning methods: the SVM and KNN classifiers;

as well as two classifiers based on our model: a MAP classifier and classification based on

MCMC. We compared all methods on 19 different spatial proteomics datasets, across four dif-

ferent organisms. When considering the macro-F1 score as a performance metric, no single

classifier outperformed another across all datasets. However, using MCMC based inference

our method significantly outperforms the SVM and KNN classifiers with respect to the
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quadratic loss in 16 out of 19 datasets. This allows us to have greater confidence in our conclu-

sions when they are drawn from our Bayesian inferences. Furthermore, using MCMC provides

a wealth of additional information, and so becomes the method of choice for analysing spatial

proteomics data.

Analysis of a hyperLOPIT experiment applied to mouse pluripotent embryonic stem cells

demonstrated that the additional layer of information that our model provides is biologically

relevant and provides further avenues for additional exploration. Moreover, applying our

method to a biologically significant dataset now provides the scientific community with locali-

sation information on up to 4000 proteins for the mouse pluripotent stem cell proteome. Fig

12 demonstrates that from an initial input of roughly 1000 marker proteins with a priori
known location and 4000 unknown proteins with unknown location, SVM and TAGM-

MCMC can provide rigorous localisation information on roughly 2000 proteins. However,

our methodology, by also considering uncertainty, allows us to obtain information on another

1000 proteins. Thus, we have augmented this dataset by providing uncertainty quantification

on the localisation of proteins to their sub-cellular niches, which had been previously unavail-

able. We note that our method is general enough to be applied to many MS-based spatial pro-

teomics protocols including: LOPIT, hyperLOPIT, protein correlation profiling (PCP) [51],

Fig 12. The barplot demonstrates the effect of applying different methodologies on protein assignment when applied the

mouse pluripotent embryonic stem cell data. Roughly 2000 proteins are classified using either SVM and TAGM-MCMC; however,

TAGM-MCMC can draw additional conclusions about an extra 1000 proteins by quantifying uncertainty.

https://doi.org/10.1371/journal.pcbi.1006516.g012
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differential centrifugation approaches and spatio-temporal proteomics methods. In our flexi-

ble software implementation, all hyperparameters for the priors can be changed if users have

precise priors they wish to specify.

We have also provided a new set of visualisation methods to accompany our model, which

allow us to easily interrogate our data. High quality visualisation tools are essential for rigorous

quality control and sound biological conclusions. Our methods have been developed in the R

statistical programming language and we continue to contribute to the Bioconductor project

[37, 38] with inclusion of our methods within the pRoloc package (> = 1.21.1) [36]. The

underlying source code used to generate this document is available at https://github.com/

lgatto/2018-TAGM-paper.

Currently, our model does not integrate localisation information from different data

sources, nor does it explicitly model proteins with multiple localisation. However, one (of

many) biological explanations for the uncertainty that we model in the allocation probabilities

is provided by multiple localisation. Thus a protein for which it is uncertain to which two sub-

cellular niches it is resident within it is perhaps resident of both niches. In further work, we

plan to explicitly model such cases to deconvolute different sources of uncertainty. In addition,

extensions to semi-supervised non-parametric methods are under consideration to detect

novel sub-cellular niches. These are the subjects of further work.

Model

We describe in this section the probabilistic model that uses the labelled data to associate un-

annotated proteins to specific organelles or sub-cellular compartments.

Mixture models for spatial proteomic data

We observe N protein profiles each of length L, corresponding to the number of quantified

fractions along the gradient density, including combining replicates. For i = 1, . . ., N, we

denote the profile of the i-th protein by x i = [x1i, . . ., xLi]. We suppose that there are K known

sub-cellular compartments to which each protein could localise (e.g. cytoplasm, endoplasmic

reticulum, mitochondria, . . .). Henceforth, we refer to these K sub-cellular compartments as

components, and introduce component labels zi, so that zi = k if the i-th protein localises to the

k-th component. We denote by XL the set of proteins whose component labels are known, and

by XU the set of unlabelled proteins. If protein i is in XU, we desire the probability that zi = k
for each k = 1, . . ., K. That is, for each unlabelled protein, we want the probability of belonging

to each component (given a model and the observed data).

We initially model the distribution of profiles associated with proteins that localise to the k-

th component as multivariate normal with mean vector μk and covariance matrix Sk, so that:

xijzi ¼ k � N ðμk;SkÞ: ð2Þ

For any i, we define the prior probability of the i-th protein localising to the k-th compo-

nent to be p(zi = k) = πk. Letting θ ¼ fμk;Skg
K
k¼1

denote the set of all component mean and

covariance parameters, and π ¼ fpkg
K
k¼1

denote the set of all mixture weights, it follows (from

the law of total probability) that:

pðxijθ; πÞ ¼
XK

k¼1

pkf ðxijμk;SkÞ; ð3Þ

where f(x|μ, S) denotes the density of the multivariate normal with mean vector μ and covari-

ance matrix S evaluated at x.
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Eq (3) defines a generative probabilistic model known as a mixture model. Such models

are useful for describing populations that are composed of a number of distinct homoge-

neous subpopulations. In our case, we model the full complement of measured proteins as

being composed of K subpopulations, each corresponding to a different organelle or sub-cel-

lular compartment. The literature of mixture model applications to biology is rich and some

recent example include applications to retroviral integration sites [52], genome-wide associa-

tions studies [53], single-cell transcriptomics [54] and affinity purification MS proteomics

[55].

Though some proteins are well described as belonging to a single component, many pro-

teins multi-localise or might belong to uncharacterised organelles. In order to allow the model

to better account for these “outliers” that cannot be straightforwardly allocated to any single

known component, we extend it by introducing an additional “outlier component”. To do

this, we augment our model by introducing a further indicator latent variable ϕ. Each protein

xi is now described by an additional variable ϕi, with ϕi = 1 indicating that protein xi belongs

to a organelle derived component and ϕi = 0 indicating that protein xi is not well described by

these known components. This outlier component is modelled as a multivariate T distribution

with degrees of freedom κ, mean vector M, and scale matrix V. Thus Eq (2) becomes

xijzi ¼ k; �i � N ðμk;SkÞ
�iT ðk;M;VÞ1� �i : ð4Þ

Further let g(x|κ, M, V) denote the density of the multivariate T-distribution so that Eq (3)

becomes:

pðxijθ; π; �i; k;M;VÞ ¼
XK

k¼1

pkðf ðxijμk;SkÞ
�i gðxijk;M;VÞ

1� �iÞ: ð5Þ

For any i, we define the prior probability of the i-th protein belonging to the outlier compo-

nent as p(ϕi = 0) = �.

We can then rewrite Eq (5) in the following way:

pðxijθ; π; k; �;M;VÞ ¼
XK

k¼1

pkðð1 � �Þðf ðxijμk;SkÞ þ �gðxijk;M;VÞÞ; ð6Þ

Throughout we take κ = 4, M as the global mean, and V as half the global variance of the

data, including labelled and unlabelled proteins. The reason for formulating the model as in

Eq (5) is because it leads to a flexible modelling framework. Furthermore, ϕ has an elegant

model selection interpretation, since it decides whether xi is better modelled by the known

components or the outlier component. It is important to note that f and g could be replaced by

many combinations of distributions and thus could be valuable in modelling other datasets.

The choice of parameters for the multivariate T-distribution was decided so that it mimicked a

multivariate normal component with the same mean and variance but with heavier tails to bet-

ter capture dispersed proteins, which we refer to as outlier proteins throughout the text. The

variance of the multivariate T-distribution is designed to be large such that is relatively flat

when compared with multivariate Gaussian distributions which describe annotated compo-

nents. Similar approaches for modelling outliers have been explored in the literature and often

the outlier term is considered constant or as a Poisson process, independent of the observation

[56–59].

A Bayesian mixture modelling approach for spatial proteomics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006516 November 27, 2018 20 / 29

https://doi.org/10.1371/journal.pcbi.1006516


Model fitting

We adopt a Bayesian approach toward inferring the unknown parameters, θ ¼ fμk;Skg
K
k¼1

,

π ¼ fpkg
K
k¼1

, and � of the mixture model presented in Eq (5). For π, we take a conjugate sym-

metric Dirichlet prior with parameter β, so that π1, . . ., πK* Dirichlet(β); and for the compo-

nent-specific parameters μk and Sk we take conjugate normal-inverse-Wishart (NIW) priors

with parameters {μ0, λ0, ν0, S0}, so that:

mk;Sk � N μkjμ0;
Sk

l0

� �

IW Skjn0; S0ð Þ: ð7Þ

We also place a conjugate Beta prior on � with parameters u and v, so that � � Bðu; vÞ.
Allowing � to be random allows us to infer the number of proteins that are better described by

an outlier component rather than any known component.

The full model, which we henceforth refer to as a T-augmented Gaussian Mixture model

(TAGM), can then be summarised by the plate diagram shown in Fig 13.

To perform inference for the parameters, we make use of both the labelled and unlabelled

data. For the labelled data XL, since zi and ϕi are known for these proteins, we can update the

parameters with their data analytically by exploiting conjugacy of the priors (see, for example

Fig 13. Plate diagram for TAGM model. This diagram specifies the conditional independencies and parameters in our model.

https://doi.org/10.1371/journal.pcbi.1006516.g013
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[60]). For the unlabelled data we do not have such information and so in the next sections we

explain how to make inferences of the latent variables.

Prediction of localisation of unlabelled proteins

Having obtained the posterior distribution of the model parameters analytically using, at first,

the labelled data only, we wish to predict the component to which each of the unlabelled pro-

teins belongs. The probability that a protein belongs to any of the K known components, that

is zi = k and ϕi = 1, is given by (see supporting information section S1 for derivations):

pð�i ¼ 1; zi ¼ kjxi; θ; π; �; k;M;VÞ ¼
pkð1 � �Þf ðxijμk;SkÞ

PK
k¼1
pkðð1 � �Þf ðxijμk;SkÞ þ �gðxijk;M;VÞÞ

; ð8Þ

whilst on the other hand,

pð�i ¼ 0; zi ¼ kjxi; θ; π; k; �;M;VÞ ¼
pk�gðxijk;M;VÞ

PK
k¼1
pkðð1 � �Þf ðxijμk;SkÞ þ �gðxijk;M;VÞÞ

: ð9Þ

Processing of the unlabelled data can be done by inferring maximum a posteriori
(MAP) estimates for the parameters. However, this approach fails to account for the uncer-

tainty in the parameters, thus we additionally explore inferring the distribution over these

parameters.

Maximum a posteriori prediction. We use the Expectation-Maximisation (EM) algo-

rithm [61] to findmaximum a posteriori (MAP) estimates for the parameters (see, for example,

[62]). To specify the parameters of the prior distributions, we use a simple set of heuristics pro-

vided by [63]. By defining the following quantities

aik ¼ pðzi ¼ k; �i ¼ 1jxiÞ; bik ¼ pðzi ¼ k; �i ¼ 0jxiÞ

wik ¼ pðzi ¼ kjxiÞ ¼ aik þ bik

ak ¼
Xn

i¼1

aik; a ¼
XK

k¼1

ak

bk ¼
Xn

i¼1

bik; b ¼
XK

k¼1

bk

rk ¼
Xn

i¼1

wik;

ð10Þ

we can compute

lk ¼ l0 þ ak;

nk ¼ n0 þ ak;

mk ¼
ak�xk þ l0m0

lk
;

S� 1
k ¼ S� 1

0
þ
l0ak
lk
ð�xk � m0Þ

T
ð�xk � m0Þ þ

Xn

i¼1

aikðxi � �xkÞ
T
ðxi � �xkÞ:

ð11Þ
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Then the parameters of the posterior mode are:

m̂k ¼ mk

Ŝk ¼
1

nk þ Dþ 2
S� 1

k :
ð12Þ

We note if xi is a labelled protein then aik = 1 and these parameters can be updated without

difficulty. The above equation constitutes a backbone of the E-step of the EM algorithm, with

the entire algorithm specified by the following summary:

E-Step: Given the current parameters compute the values given by Eq (10), with formulae pro-

vided in Eqs (8) and (9).

M-Step: Compute

� ¼
uþ b � 1

ðaþ bÞ þ ðuþ vÞ � 2
;

and

pk ¼
rk þ bk � 1

N þ
P
bk � K

;

as well as

�xk ¼
1

ak

Xn

i¼i

aikxi

 !

:

Finally, compute the MAP estimates given by Eq (12). These estimates are then used in the

following iteration of the E-step.

Denoting by Q the expected value of the log-posterior and letting t denote the current itera-

tion of the EM algorithm, we iterate until |Q(θ|θt) − Q(θ|θt−1)|< δ for some pre-specified δ>
0. Once we have found MAP estimates for the parameters θMAP, πMAP and �MAP we proceed to

perform prediction. We plug the MAP parameter estimates into Eq (8) in order to obtain the

posterior probability of protein i localising to component k, p(zi = k, ϕ = 1|xi, θMAP, πMAP,
�MAP, κ, M, V). To make a final assignment, we may allocate each protein according to the

component that has maximal probability. A full technical derivation of the EM algorithm can

be found in the supporting information (section S1).

Uncertainty in the posterior localisation probabilities. The MAP approach described

above provides us with a probabilistic assignment, p(zi = k, ϕ = 1|xi, θMAP, πMAP, �MAP, κ, M,

V), of each unlabelled protein to each component. However, it fails to account for the uncer-

tainty in the parameters θ, π and �. To address this, we can sample parameters from the poste-

rior distribution.

Let fθðtÞ; πðtÞ; �ðtÞg
T

t¼1
be a set of T sampled values for the parameters θ, π, �, drawn from the

posterior.

The assignment probabilities can then be summarised by the Monte-Carlo average:

pðzi ¼ k; � ¼ 1jxi; �;M;VÞ � T � 1
XT

t¼1

pðzi ¼ k; � ¼ 1jxi; θ
ðtÞ
; πðtÞ; �ðtÞ; k;M;VÞ:
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Other summaries of the assignment probabilities can be determined in the usual ways to

obtain, for example, interval-estimates. We summarise interval-estimates using the 95% equi-

tailed interval, which is defined by the 0.025 and 0.975 quantiles of the distribution of assign-

ment probabilities, fpðzi ¼ k; � ¼ 1jxi; θ
ðtÞ
; πðtÞ; �ðtÞ;M;VÞg

T

t¼1
.

Sampling parameter values in our model requires us to compute the required conditional

probabilities and then a straightforward Gibbs sampler can be used to sample in turn from

these conditionals. In addition, we can bypass sampling the parameters by exploiting the con-

jugacy of our priors. By marginalising parameters in our model we can obtain an efficient col-

lapsed Gibbs sampler and therefore only sample the component allocation probabilities and

the outlier allocation probabilities. The derivations and required conditionals can be found in

the supporting information (section S2).

Classifier assessment

We compared the classification performance of the two above learning schemes to the K-near-

est neighbours (KNN) and the weighted support vector machine (SVM) classifiers.

The following schema was used to assess the classifier performance of all methods. We split

the marker sets for each experiment into a class-stratified training (80%) and test (20%) parti-

tions, with the separation formed at random. The true classes of the test profiles are withheld

from the classifier, whilst the algorithm is trained. The algorithm is then assessed on its ability

to predict the classes of the proteins in the test partition for generalisation accuracy. How each

classifier is trained is specific to that classifier. The KNN and SVM have hyperparameters opti-

mised using 5-fold cross-validation. This 80/20 data stratification is performed 100 times in

order to produce 100 sets of macro-F1 [64] scores and class specific F1 scores [25]. The F1

score is the harmonic mean of the precision and recall, more precisely:

precision ¼
tp

tpþ fp
; recall ¼

tp
tpþ fn

:

tp denotes the number of true positives; fp the number of false positives and fn the number of

false negatives. Thus

F1 ¼ 2�
precision� recall
precisionþ recall

:

High Macro F1 scores indicates that marker proteins in the test dataset are consistently cor-

rectly assigned by the classifier. We note that accuracy alone is an inadequate measure of per-

formance, since it fails to quantify false positives.

However, a Bayesian generative classifier produces probabilistic assignment of observations

to classes. Thus while the classifier may make an incorrect assignment it may do so with low

probability. The F1 score is unforgiving in this situation and will not use this information. To

measure this uncertainty, we introduce the quadratic loss which allows us to compare

probabilistic assignments [65]. For the SVM, a logistic distribution is fitted using maximum

likelihood estimation to the decision values of all binary classifiers. Then, the membership

probabilities for the multi-class classification is calculated using quadratic optimisation. The

logistic regression model assumes errors which are distributed according to a centred Laplace

distribution for the predictions, where maximum likelihood estimation is used to estimate the

scale parameter [66]. For the KNN classifier, we interpret the proportion of neighbours

belonging to each class as a non-parametric posterior probability. To avoid non-zero probabil-

ities for classes we perform Laplace smoothing; that is, the posterior allocation probability is
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given by

pðzi ¼ kjxiÞ ¼
Nik þ adkC
K þ aC

; ð13Þ

where Nik is the number of neighbours belonging to class k in the neighbourhood of xi, C is

the number of classes, K is the number of nearest neighbours (optimised through 5-fold cross

validation) and dk is the incidence rate of each class in the training set. Finally, α> 0 is the

pseudo-count smoothing parameter. Motivated by a Bayesian interpretation of placing a Jef-

frey’s type Dirichlet prior over multinomial counts, we choose α = 0.5 [67–69]. The quadratic

loss is given by the following formula:

Q2 ¼
XN

i¼1

kqi � pi k
2

2
; ð14Þ

where k�k2 is the l2 norm and qi is the true classification vector and pi is a vector of predicted

assignments to each class. It is useful to note that the corresponding risk function is the mean

square error (MSE), which is the expected value of the quadratic loss.

Supporting information

S1 Text. Figure A: Plot of the log-posterior at each iteration of the EM algorithm to demon-

strate monotonicity and convergence. Figure B: Trace plots of the number of proteins allocated

to the known components in each of 6 parallel MCMC runs. Chain 4 is discarded because of

lack of convergence. 600 samples are retained from remaining chains and pooled. Figure C:

Gene Ontology over representation analysis on outlier proteins—that is proteins allocated

with less than probability 0.95. We analyse the enrichment of terms in the cellular compart-

ment, biological process, and molecular function ontologies. We display the top 10 significant

results in the dotplots. Figure D: A heatmap representation of a contingency table comparing

allocation produced by MCMC and MAP methods with posterior probability threshold set at

0.99 for both methods. The scale ranges from 0 to 1 with values indicating the proportion of

assigned proteins to that sub-cellular location. Values along the diagonal represent agreement

between classifiers whilst other values represent disagreement. The allocations of proteins by

both methods are in strong agreement.

(PDF)
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